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• Entanglement of Formation.

• EoF - entanglement of formation is the second mathematical ’tool’ for
an analysis of entanglement.

• It is designed to separate separable states from entangled states.

• EoF was introduced by Bennett, DiVincenzo, Smolin and Wooters for
finite dimensional case in 1996.

• The general definition of EoF for quantum systems (so for infinite
dimensional cases) was appeared in 2002.

• EoF can be considered as a measure of entanglement, so as a measure
of quantum correlations.
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• The basic idea stems from the following observation:

• Let ω be a separable state on a quantum composite system specified by
A = A1 ⊗ A2.

• Decompose ω into pure states and apply the restriction map r1 :
SA → SA1, given by r1ω(A) = ω(A ⊗ 1), to each component of the
decomposition.

• Let F be a function defined on the set of states such that it takes the
value 0 only on pure states.

• Then, applying F to the restriction of each component one gets an
indicator of separability.

• Why?
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• To answer, it is important to observe that the restriction of a pure state
is a pure one only for certain exceptional cases.

• To clarify this question we provide relevant results. The first one is (is
extracted from Takesaki’s book):

• Proposition 1. Let A = A1 ⊗ A2, where Ai, i = 1, 2 is a C∗-algebra,
and the state ω ∈ SA be given. Denote by r1ω a restriction of state ω
to A1 (we identify A1 with A1 ⊗ 12). Assume that r1ω is a pure state.
Then, ω(AB) = ω(A)ω(B) when A ∈ A1 and B ∈ A2.

• Thus, the purity of r1ω implies the factorization of ω.

• The second result is (again taken from Takesaki’s book):
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• Theorem 2. For two C*-algebras A1 and A2 the following conditions
are equivalent

1. Either A1 or A2 is abelian
2. Every pure state ω on A1 ⊗ A2 is of the form ω = ω1 ⊗ ω2 for some

pure states ωi on Ai, i = 1, 2.

• Thus, the restriction of a state is a pure state for exceptional cases only!

• In our lectures, we consider a quantum composite system.

• It means that both subsystems are quantum. Consequently, neither A1

nor A2 is abelian.
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• To give the next result some preliminaries are necessary.

• Given a pair (A, ω) consisting of a C∗-algebra and a state, one
can associate (via GNS construction) the Hilbert space Hω and the
representation πω.

• The family of all bounded linear operators on Hω, as usually, will be
denoted by B(Hω).

• The commutant of πω(A) is defined as πω(A)
′ =

{A ∈ B(Hω);Aπω(B) = πω(B)A for all B ∈ A}.

• In the same way one can define bicommutant πω(A)
′′ = (πω(A)

′)
′.

• πω(A)
′′ is said to be a factor if πω(A)

′′ ∩ πω(A)
′ = {C1}.
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• Definition 3. A state ω on a C*-algebra A is said to be factorial if
πω(A)

′′ is a factor.

• The promised result is:

• Proposition 4. Let A1, A2 be C*-algebras and put A = A1 ⊗ A2.
Denote by r1 the restriction map r1 : SA → SA1. r1 is weak-∗
continuous. Moreover, Ext(SA1) ⊆ r1(Ext(SA)) ⊆ FA1 where FA1

stands for factorial states on A1, and Ext(SA) stands for the subset of
extreme elements ofSA. If A2 is abelian then Ext(SA1) = r1(Ext(SA)).

• Consequently, if one considers the true quantum composite system,
i.e. both subsystems are quantum (so both C∗-algebras Ai are non
commutative ones) then one can say only that the restriction of a pure
state is a factorial one.
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• This clearly indicates the role of the function F in the definition given
below.

• Also, it is worth pointing out that (weak-∗)-(weak-∗) continuity of the
restriction r1 was already used in the discussion of quantum coefficient
of correlations.

• We give:

Definition 5. Let ω be a state, ω ∈ F ⊂ SA1⊗A2 and F satisfy
separability condition SC. The entanglement of formation EoF is defined
as

EF(ω) = inf
µ∈Mω(SA1⊗A2

)

∫
F(rφ)dµ(φ) (1)

where F is a concave non-negative continuous function which vanishes
on pure states and only on pure states, and to shorten notation we write
r instead of r1.
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• Let us comment upon this definition.

• Firstly, we recall that a given state ω can have many decompositions.

• Therefore, we are forced to use the decomposition theory.

• In particular, orthogonal measures are playing an important role as they
could be supported by Ext(SA)!

• Further, we assumed the separability condition, SC, to avoid pathological
measure-theoretical cases in the decomposition of ω.

• But, Ruelle’s SC condition holds for all essential physical models.

• Finally, in physical literature, frequently, one employs the von Neumann
entropy as the function F.
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• Example 6. Let Ai = B(Hi), i = 1, 2; A = A1⊗A2 and F denote the
set of all normal states on B(H1)⊗B(H2) = B(H1 ⊗H2).

Let φ ∈ F . Then φ(·) = Trρφ(·), and one can identify φ with ρφ. Take
F to be the von Neumann entropy

F(φ) = −Trρφ log ρφ (2)

Clearly, the von Neumann entropy satisfies all necessary properties
provided that H is finite dimensional.

However, note that the function ρφ 7→ Tr{ρφ(1− ρφ)} also possesses all
necessary properties (again, for finite dimensional systems).

Thus, this function can lead to another measure of entanglement.
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• We wish to show that Entanglement of Formation can distinguish
separable states from entangled states.

• To simplify notation, in the sequel, we will write E(ω) instead of EF(ω).

• E(ω) is defined as infimum of integrals evaluated on a continuous
functions and the infimum is taken over the compact set.

• Therefore, the infimum is attainable, i.e. there exists a measure µ0 ∈
Mω(S) such that

E(ω) =

∫
S

F(rφ)dµ0(φ) (3)
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• and, obviously, ∫
S

φdµ0(φ) = ω (4)

• Let us assume that E(ω) = 0.

• Then we have ∫
S

F(rφ)dµ0(φ) = 0 (5)

• As F(rφ) is non-negative, one can infer that F(rφ) = 0 on the support
of µ0.

• But, as F is a concave function, one has

F(rφ) ≥
∫
S

F(rv)dξ(v) (6)
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for any probability measure dξ on S such that φ =
∫
S
vdξ(v).

• In particular taking (as a measure ξ) a measure supported by pure
states (from decomposition theory such measures exist) we conclude the
existence of decomposition of φ such that F(rv) = 0 for v, hence rv is
a pure state and consequently v is a product state, cf Proposition 1.

• So, φ is a convex combination of product states.

• Due to the fact that any (classical) measure has weak∗-approximation
property, ω can be approximated by a convex combination of product
states.

• Consequently, ω is a separable state.
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Conversely, let ω be a separable state, i.e.

ω = lim
N→∞

N∑
i=1

λ
(N)
i ω

(N)
i (7)

where each ωi is a product state such that ω
(N)
i (A ⊗ B) =

ω
(N)
i,1 (A)ω

(N)
i,2 (B),

where ω
(N)
i,k (·) is a pure state on Ak.

• Define the sequence of measures µ(N) in the following way:

µ(N) =

N∑
i=1

λ
(N)
i δ

ω
(N)
i

(8)
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where δ
ω
(N)
i

denotes Dirac’s measure.

• If necessary, passing to a subsequence, we may suppose also that µ(N)

converges to µ ∈ Mω(SA)

(it is always possible as {µ(N)} ⊂ M1(SA), which a compact set).

• Taking a weak limit of
{
µ(N)

}
one gets a measure µ such that

∫
φdµ(φ) = ω (9)

and ∫
F(rφ)dµ(φ) = 0 (10)
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• Thus, we arrived at:

Theorem 7. E(ω) = 0 if and only if ω ∈ F is separable.

• Entanglement of Formation, EoF , is not only a nice indicator of
separability.

• It possesses also many useful properties like convexity, semi-continuity
and others.

• In this lecture, we will be concerned with convexity and with the property
of EoF which can be regarded as an analogue of entanglement witness.
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• We begin with

Proposition 8. SA ∋ ω −→ E(ω) is a convex function.

• To see this we note that decomposition theory implies

• µ ∈ Mω(SA) if and only if µ(f) ≥ f(ω) for any real, continuous convex
function on SA.

• Thus,

if µ1 ∈ Mω1(SA), µ2 ∈ Mω2(SA), λ1 ≥ 0, λ2 ≥ 0, and λ1 + λ2 = 1

then

(λ1µ1+λ2µ2)(f) = λ1µ1(f)+λ2µ2(f) ≥ λ1f(ω1)+λ2f(ω2) ≥ f(λ1ω1+λ2ω2).
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• On the other hand

λ1µ1 + λ2µ2 ∈ Mλ1ω1+λ2ω2(SA)

is equivalent to

(λ1µ1 + λ2µ2)(f) ≥ f(λ1ω1 + λ2ω2).

• But, the convexity of f implies λ1f(ω1) + λ2f(ω2) ≥ f(λ1ω1 + λ2ω2).

• Therefore, λ1µ1 + λ2µ2 ∈ Mλ1ω1+λ2ω2(SA).

• Consequently

λ1Mω1(SA) + λ2Mω2(SA) ⊆ Mλ1ω1+λ2ω2(SA). (11)
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• Hence

E(λ1ω1 + λ2ω2) = inf
µ∈Mλ1ω1+λ2ω2

(SA)

∫
F ◦ r(φ)dµ(φ) (12)

≤ λ1 inf
µ∈Mω1(SA)

∫
F ◦ (φ)dµ(φ) + λ2 inf

µ∈Mω2(SA)

∫
F ◦ (φ)dµ(φ)

= λ1E(ω1) + λ2E(ω2).

• Thus, EoF is a convex function.

• EoF has a property which seems to be of the same nature as
entanglement witness.

• To describe it we need some preliminaries.
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• The first one is Bauer maximum principle:

Proposition 9. Let E be a Hausdorff locally convex topological space
andX ⊂ E a (non empty) convex compact subset. Suppose f : X −→ R

is convex and upper semi-continuous. Then there exists an extreme point
of X (not necessarily unique) at which f assumes its maximum value.

• The second one is the characterization of extremal measures in Mω(SA).

Proposition 10. Let A be a C∗-algebra (with identity) and ω ∈ SA.
Let µ be in Mω(SA). Then, the following conditions are equivalent:

1. µ ∈ Ext (Mω(SA)).
2. the affine continuous functions over SA are dense in L1(SA, µ).
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• “new entanglement witness”.

• To describe it, we denote, for µ ∈ Mω(SA)

Eµ(ω) =

∫
(F ◦ r)(φ)dµ(φ).

• Mω(SA) ∋ µ 7→ Eµ(ω) is an affine, real valued, continuous function on
SA.

• An application of Proposition 9 implies that minimum in definition of
E(ω) (cf the proof of Theorem 7) is attained on a certain extremal
measure µ0 in Mω(SA).

IFTiA Gdańsk University – Poland 20



Quantum correlations VII. Gdansk-Houston, March, 2015

• Then, applying Proposition 10 one gets:

• there exists an affine function Â0 : ω 7→ ω(A0), where A∗
0 = A0 ∈ A

such that

|E(ω)− ω(A0)| = |
∫
SA

(F ◦ r)(φ)dµ0(φ)−
∫
SA

Â0(φ)dµ0(φ)| (13)

≤
∫
SA

|(F ◦ r)(φ)− Â0(φ)|dµ0(φ) < ϵ,

for an arbitrary small ϵ, as F ◦ r is a continuous function on a compact
set SA.

• Consequently, there exists an observable A0 = A∗
0 ∈ A such that its

expectation value ω(A0) ≡< A0 >ω approximates EoF , E(ω), at a
given state ω.
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• Final remark.

• continuity of EoF , i.e. of the mapping SA ∋ ω 7→ E(ω).

• This mapping is a real valued, convex function defined on a compact set.

• It can be proved that it is lower semicontinuous.

• In general, not upper semicontinuos.

• Consequently, continuity properties of EoF , E(ω) are of the same sort
as those of quantum entropy, see Wehrl.
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