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Quantum correlations VII.

e FoF - entanglement of formation is the second mathematical 'tool’ for
an analysis of entanglement.

e |t is designed to separate separable states from entangled states.

e EoF was introduced by Bennett, DiVincenzo, Smolin and Wooters for
finite dimensional case in 1996.

e The general definition of EFoF for quantum systems (so for infinite
dimensional cases) was appeared in 2002.

e EoF can be considered as a measure of entanglement, so as a measure
of quantum correlations.
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e The basic idea stems from the following observation:

e Let w be a separable state on a quantum composite system specified by
A =2A; ®LAs.

e Decompose w into pure states and apply the restriction map ry :
Sy — Gy, given by mw(A) = w(A® 1), to each component of the
decomposition.

e Let IF be a function defined on the set of states such that it takes the
value 0 only on pure states.

e Then, applying IF to the restriction of each component one gets an
indicator of separability.

e Why?
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e To clarify this question we provide relevant results. The first one is (is
extracted from Takesaki's book):

e Proposition 1. Let A =2; ® Ay, where U;, © = 1,2 is a C*-algebra,
and the state w € Gy be given. Denote by riw a restriction of state w
to Ay (we identify A1 with 2y ® 15). Assume that riw is a pure state.
Then, w(AB) = w(A)w(B) when A € A, and B € 5.

e Thus, the purity of riw implies the factorization of w.

e The second result is (again taken from Takesaki's book):
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e Theorem 2. For two C*-algebras 21, and 25 the following conditions
are equivalent

1. Either 2y or 25 is abelian

2. Every pure state w on 21 ® s is of the form w = w1 ® wy for some
pure states w; on%l;, 1 =1, 2.

e Thus, the restriction of a state is a pure state for exceptional cases only!
e |n our lectures, we consider a quantum composite system.

e |t means that both subsystems are quantum. Consequently, neither 2l
nor 25 is abelian.
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To give the next result some preliminaries are necessary.

Given a pair (2A,w) consisting of a C*-algebra and a state, one
can associate (via GNS construction) the Hilbert space H, and the
representation .

The family of all bounded linear operators on H,,, as usually, will be
denoted by B(H.,,).

The commutant of 7, () is defined as 7, ,(A) =
{A € B(Hy); An(B) = 7(B)A  for all B € 2},

In the same way one can define bicommutant 7, ()" = (7, (A)")’.

7 ()" is said to be a factor if 7, ()" Nw,(A) = {C1}.
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e Definition 3. A state w on a C*-algebra 2 is said to be factorial if
()" is a factor.

e The promised result is:

e Proposition 4. Let 2y, Ay be C*-algebras and put A = Ay ® As.
Denote by ri the restriction map r1 : Gy — OGg,. T1 IS weak-x
continuous. Moreover, Ext(Sgy,) C ri(Ext(Sy)) C Fy, where Fy,
stands for factorial states on 21y, and Ext(Gg) stands for the subset of
extreme elements of Gy . IfUs is abelian then Ext(Gg,) = r1(Ext(Sy)).

e Consequently, if one considers the true quantum composite system,
i.e. both subsystems are quantum (so both C*-algebras 2(; are non
commutative ones) then one can say only that the restriction of a pure
state is a factorial one.
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e This clearly indicates the role of the function I in the definition given
below.

e Also, it is worth pointing out that (weak-*)-(weak-*) continuity of the
restriction r; was already used in the discussion of quantum coefficient
of correlations.

o We give:

Definition 5. Let w be a state, w € ' C Gy, gu, and I satisfy
separability condition SC. The entanglement of formation EoF' is defined
as

B = _ it [Froda( (1)

peMu(Sy; gu,)

where I is a concave non-negative continuous function which vanishes
on pure states and only on pure states, and to shorten notation we write
r instead of rq.
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e Let us comment upon this definition.
e Firstly, we recall that a given state w can have many decompositions.
e Therefore, we are forced to use the decomposition theory.

e |n particular, orthogonal measures are playing an important role as they
could be supported by Ezt(Gg)!

e Further, we assumed the separability condition, SC, to avoid pathological
measure-theoretical cases in the decomposition of w.

e But, Ruelle’'s SC condition holds for all essential physical models.

e Finally, in physical literature, frequently, one employs the von Neumann
entropy as the function F.
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e Example 6. Let2; = B(H;),i=1,2; A =2, ®%A5 and F denote the
set of all normal states on B(H1) ® B(H2) = B(H1 ® Ha).

Let o € F'. Then ¢(-) =Trp,(-), and one can identify ¢ with p,. Take
IF' to be the von Neumann entropy

F(p) = —Trp,log py (2)

Clearly, the von Neumann entropy satisfies all necessary properties
provided that H is finite dimensional.

However, note that the function p, — Tr{p,(1 — p,)} also possesses all
necessary properties (again, for finite dimensional systems).

Thus, this function can lead to another measure of entanglement.
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e To simplify notation, in the sequel, we will write F(w) instead of Ep(w).

e F(w) is defined as infimum of integrals evaluated on a continuous
functions and the infimum is taken over the compact set.

e Therefore, the infimum is attainable, i.e. there exists a measure pg €
M,,(6) such that

E(w) = /@ F(ro)duo(e) 3)
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e and, obviously,

/ pdpo(p) = w (4)
S

e Let us assume that F(w) = 0.

e Then we have

/6 F(re)dpio(e) = 0 (5)

e As IF(rp) is non-negative, one can infer that F(r¢) = 0 on the support
of Lo

e But, as IF' is a concave function, one has

F(ro) > /6 F(ro)dé (v) (6)
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for any probability measure d§ on & such that ¢ = [ vd&(v).

e In particular taking (as a measure &) a measure supported by pure
states (from decomposition theory such measures exist) we conclude the
existence of decomposition of ¢ such that F(rv) = 0 for v, hence rv is
a pure state and consequently v is a product state, cf Proposition 1.

e S0, ¢ is a convex combination of product states.

e Due to the fact that any (classical) measure has weak*-approximation
property, w can be approximated by a convex combination of product
states.
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Conversely, let w be a separable state, i.e.

— lim ZA(N) ) (7)

N — o0

where each w; is a product state such that w,fN)(A@) B) =
N N
W§,1>(A)W§,2>(B)’

where %(]Z)() is a pure state on .

e Define the sequence of measures ;™) in the following way:

N
p™M =35 ) (8)

1=1
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where 0 (n) denotes Dirac’'s measure.
w .
(2

e If necessary, passing to a subsequence, we may suppose also that p (V)
converges to € M, (Gy)

(it is always possible as {u™)} € M;(Gy), which a compact set).
e Taking a weak limit of {,u(N)} one gets a measure u such that
/ edp(p) = w (9)

and

/ F(ro)du(p) = 0 (10)
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e Thus, we arrived at:

Theorem 7. FE(w) =0 if and only if w € F' is separable.

e Entanglement of Formation, EoF', is not only a nice indicator of
separability.

e |t possesses also many useful properties like convexity, semi-continuity
and others.

e In this lecture, we will be concerned with convexity and with the property
of EoF' which can be regarded as an analogue of entanglement witness.
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e We begin with

Proposition 8. Sy > w — F(w) is a convex function.

e To see this we note that decomposition theory implies

o € M,(Sy) if and only if u(f) > f(w) for any real, continuous convex
function on Sy.

e [hus,
if 1y € Mwl(GQl): o € Mw2(6m), A >0, A >0, and A1 + Ao =1

then

(ArprrtAop2)(f) = Apr (f)+Hdep2(f) > Arf(wi)+Aef(w2) > f(Ariwi+Aows).
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e On the other hand

)\Lu’l + )\2/1’2 ~ M)\lwl—l—)\gwg(gm)

is equivalent to

(Arpn + Aop2)(f) = F(Awr + Adswa).
e But, the convexity of f implies A\1f(w1) + Ao f(w2) > f(Aiwr + Aows).
o Therefore, A\jj1 4+ Aapta € My w;+r0ws(Sa1).
e Consequently

)‘1MW1(69l) T )‘2Mw2(69l) C M>\1w1—|—>\2w2(69l)' (11)
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e Hence
E()\lwl + )\2&)2) = inf
/’LEM)\1W1+)\2w2(6Ql)
<\ inf I d + A
M / o (p)du(p) + A2

= )\1E(w1) + )\QE(CL)

e Thus, EoF is a convex function.

e To describe it we need some preliminaries.

/F or(p)du(y)  (12)

inf / o (¢)du(e)

MEMWQ(GQ[)

2).
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e The first one is Bauer maximum principle:

Proposition 9. Let E be a Hausdorff locally convex topological space
and X C F a (non empty) convex compact subset. Suppose f : X — R
Is convex and upper semi-continuous. Then there exists an extreme point
of X (not necessarily unique) at which f assumes its maximum value.

e The second one is the characterization of extremal measures in M, (Sy).

Proposition 10. Let 2 be a C*-algebra (with identity) and w € Gy.
Let i be in M,(Sy). Then, the following conditions are equivalent:

1. p e Ext (M, (Sy)).
2. the affine continuous functions over Gy are dense in L' (Ggy, p).
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e To describe it, we denote, for u € M, (Sy)

B(w) = / (F o 1) () du(e).

o M,(Gy) 2 pu— E,(w) is an affine, real valued, continuous function on
Sy

e An application of Proposition 9 implies that minimum in definition of
E(w) (cf the proof of Theorem 7) is attained on a certain extremal
measure g in M, (Gy).
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e Then, applying Proposition 10 one gets:

e there exists an affine function Ay : w — w(Ag), where A% = Ay € A
such that

BEw) - w(do)| = | | (For)(p)duole) - / Ao(@)dpo(2)]  (13)
Sy Sy

< / (F o 1)(9) — Ao(e)|do(e) < e
Sy

for an arbitrary small ¢, as IF o is a continuous function on a compact
set Gy.

e Consequently, there exists an observable Ag = A € 2 such that its
expectation value w(A4y) =< Ag >, approximates FoF', E(w), at a
given state w.
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e Final remark.

e continuity of EoF, i.e. of the mapping Gy > w — E(w).

e This mapping is a real valued, convex function defined on a compact set.
e |t can be proved that it is lower semicontinuous.

e |n general, not upper semicontinuos.

e Consequently, continuity properties of FoF, FE(w) are of the same sort
as those of quantum entropy, see Wehrl.
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